If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+24^2=32^2
We move all terms to the left:
a^2+24^2-(32^2)=0
We add all the numbers together, and all the variables
a^2-448=0
a = 1; b = 0; c = -448;
Δ = b2-4ac
Δ = 02-4·1·(-448)
Δ = 1792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1792}=\sqrt{256*7}=\sqrt{256}*\sqrt{7}=16\sqrt{7}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{7}}{2*1}=\frac{0-16\sqrt{7}}{2} =-\frac{16\sqrt{7}}{2} =-8\sqrt{7} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{7}}{2*1}=\frac{0+16\sqrt{7}}{2} =\frac{16\sqrt{7}}{2} =8\sqrt{7} $
| 2c+6=6c-10 | | 2x+2=-28+5x | | 1200x+1.10=2.50 | | 4x2+72x=252 | | 50x+90x+45=65 | | 5x+1=−5x+10x | | x+4.1,000,000,000=2.3,000,000,000 | | 30=5(x/5+3) | | -4+3(x+4)=-4=5x | | 4x/13+3/13=-3/13 | | 1/3(-27x+45)=24 | | X=1721429+.05x+.25x+.05x | | 16.50h=46.50 | | 5x+35=7x-15 | | 21x+7=23x-5 | | C=40p*11 | | 15.35=z-4.84 | | n/13=13;n=39 | | 15x-5=13x+11 | | 2x+3+100+5=180 | | 2(5-x)•8=x+5 | | 2x+3+100=5=180 | | 8(2x+2)=40x | | 6(x-5)-2x=x-3 | | 2x+3+5+100=180 | | 8a+-10a+2=10a+20+-5a | | 2-x+8=x+x | | 3x-(3x+5)-8=1/2(8x+20)-3x+5 | | 2x/3-x=x/15-4/3 | | 2=7w–2w | | 3(x+8)=2(2x+16)x= | | d/1.2=2.4 |